Visa allastudier.se som: Mobil

Fysikens matematiska metoder

Umeå universitet
Sammanfattning
Fristående kurser (grundnivå)
Umeå
15 hp
Heltid
Klassrum
Startdatum: Höst 2020 - Umeå

Fysikens matematiska metoder

Kursen är indelad i fyra moment.Moment 1 (6,5 hp): Introduktion till differentialekvationerI momentet behandlas första ordningens ordinära differentialekvationer (separabla ekvationer och integrerande faktor) och andra ordningens ordinära differentialekvationer (med variation av parameter). Dessutom ingår kvalitativ analys och begreppet fasplan, potensserielösningar, Laplacetransformen inklusive begreppen faltning och impulsfunktion. Vidare studeras lösning av linjära system av ordinära differentialekvationer med matrismetoder. Avslutningsvis ges en introduktion till lösning av partiella differentialekvationer med separation av variabler och Fourierserier.Moment 2 (1 hp): Datorlaboration 1Laboration som illustrerar begreppen samt visar på olika numeriska metoder att lösa ordinära differentialekvationer av de slag som ingår i kursen. I samband med datorlaborationen ges en introduktion till mjukvara för numerisk lösning av differentialekvationerMoment 3 (6,5 hp): Fourieranalys med tillämpning på partiella differentialekvationerInledningsvis sker ett fördjupat studium av de komplexa talen, gammafunktionen och de elementära funktionerna samt deras inverser definierade i komplexa planet. Dessutom ges en kort orientering om begreppet analytisk funktion samt Cauchys sats med tillämpning på integralberäkning med hjälp av residykalkyl.För att motivera studiet av partiella differentialekvationer härleds några vanligt förekommande typer ur enkla fysikaliska principer. Ett viktigt verktyg är Fourierserieutveckling av funktioner. Fourierserier behandlas tämligen ingående och även frågor om olika typer av konvergens tas upp liksom tillämpningar på lösning av partiella differentialekvationer. Fourierserierna generaliseras sedan till utveckling av funktioner i allmänna ortogonala system och i samband med det studeras Hilbertrum och konvergens i norm. Teorin tillämpas på problem av Sturm-Liouville typ och allmänna randvärdesproblem för några viktiga klasser av partiella differentialekvationer. Några, i fysikaliska tillämpningar förekommande, system av ortogonala polynom behandlas relativt ingående.En grundlig genomgång av teorin för Fouriertransformen samt några av dess tillämpningar avslutar momentet.Moment 4 (1 hp): Datorlaboration 2Laborationen introducerar den viktiga finita elementmetoden för numerisk lösning av partiella differentialekvationer. Först visas hur lösningen byggs upp för det endimensionella fallet. Därefter studeras ett tillämpat problem för ett tvådimensionellt problem med hjälp av ett menybaserat system. I samband med laborationen ges en kort introduktion till finita elementmetoden.

Förkunskaper

För tillträde till kursen krävs 22,5 hp analys och minst 7,5 hp linjär algebra eller motsvarande kunskaper.

Umeå universitet

Umeå universitet

Välkommen till Umeå universitet

Att studera är första steget mot en spännande framtid. Att studera är också att ha kul under tiden. Gör det tillsammans med 36 000 studenter från hela världen! För att studierna ska fungera riktigt bra är det viktigt med en miljö att trivas...


Läs mer om Umeå universitet och visa alla utbildningar

Hitta till utbildaren

Umeå universitet

Recensioner

Det finns inga recensioner för Fysikens matematiska metoder

Jobb & Lön

Var finns framtidens jobb & hur mycket kommer jag att tjäna?

Få koll på vad du kan tjäna efter din utbildning och om den branschen är värd att investera din tid i.

Till Jobb & Lön

Du kanske också är intresserad av: